Final of the Luxembourg Physics Olympiad 2024

PRACTICAL TASK

On the elasticity properties of a plastic film

Introduction

In this practical round, we will investigate the elastic properties of a rolled-up sheet. If this sheet is compressed perpendicularly to its axis of symmetry, the shape of the film can be approximated geometrically with that of a **stadium**, which consists of two semicircles connected by straight line segments.

Theory:

In the stadium approximation, the following power law gives the relation between the applied force and radius:

$$F = \kappa \cdot R_0^{\alpha}$$

- R_0 is the curve radius.
- The constants κ und α must be determined experimentally!

Materials and experimental setup

- laboratory scales
- lab jack + boards
- tripod and right angle screw clamps
- plastic sheet
- adhesive tape
- ruler with stand and sliders
- scissors
- graphing paper

Experiment instructions and evaluation

- 1. Roll up the plastic sheet lengthwise to form a cylinder. Connect the ends of the film using a strip of adhesive tape. The ends may partially overlap (1 cm to 2 cm).
- 2. Place the roll on the body as shown in the sketch. Raise the lifting platform until the cylinder just touches both wooden boards and fits tightly.
- 3. Calibrate the scale and determine the initial radius R_c of the cylinder. Make sure to check the scale regularly. The scale display will switch off after a few minutes if there are no changes in measurement. Tap it occasionally with your finger or a pen to keep it active.
- 4. Now lift the platform step by step and measure the mass corresponding to the force F acting on the cylinder and the respective radius R_0 . Take care not to kink the sheet.
- 5. Make a note the measured values in a table and calculate the values: $\ln(R_0)$ and $\ln(F)$.
- 6. Draw $\ln(F)$ against $\ln(R_0)$.
- 7. Draw a trendline and clearly mark the region where the stadium approximation holds.
- 8. Use the diagram to determine the parameters κ and α in the power law.
- 9. Estimate the absolute measurement uncertainty $\Delta \alpha$ for the parameter α from the diagram.

Tip: $\Delta \alpha = \frac{\alpha_{max} - \alpha_{min}}{2}$ Calculate the the relative error

- 10. Discuss which test parameters the value κ could depend on. Which series of experiments would be needed to find these relationships? You can qualitatively test your assumptions in two ways:
 - experimental approach (only with the available material): use a measurement to test your reasoning without a full investigation.

Δα

.

- theoretical approach: Justify and discuss your suggestions mathematically or using physical arguments.

Appendix	Evaluation			
Logarithm rules	1.	0,5 pts	6.	6 pts
• $\ln(x) + \ln(y) = \ln(x \cdot y)$	2.	0,5 pts	7.	2 pts
• $\ln(x) - \ln(x) = \ln(x/y)$	3.	0,5 pts	8.	5 pts
• $\ln(x^y) = y \cdot \ln(x)$	4.	0,5 pts	9.	3 pts
• $\ln\left(\sqrt[n]{x}\right) = n^{-1} \cdot \ln(x)$	5.	3 pts	10.	4 pts
	TOTAL: 25 pts.		pts.	